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Modern spacecraft are often equipped with large-scale, complex, and lightweight solar arrays whose deployment involves a highly
dynamic movement. 'is paper proposed a novel adaptive proportional-derivative typed fuzzy logic control scheme for the
attitude stabilization of a flexible spacecraft during the deployment of a composite laminated solar array. First, a constrained rigid-
flexible coupling spacecraft model consisting of a rigid main body and a flexible solar array was proposed.'e solar array, which is
composed of composite laminated shells, was described by the absolute nodal coordinate formulation. 'en, the detailed
derivation of the adaptive fuzzy PD controller for attitude stabilization of the spacecraft was discussed. In addition, the spacecraft
dynamic model which integrated the adaptive fuzzy PD controller was derived as a set of differential-algebraic equations. Several
simulations were developed to investigate the solar array deployment dynamics and to verify the effectiveness of the proposed
adaptive fuzzy PD controller. 'e results suggested that the proposed dynamic model is able to exactly describe the deployment
dynamics of the composite laminated solar array.'e solar array deployment causes obvious translational and rotational motions
of the spacecraft. 'e proposed adaptive fuzzy PD control scheme has better performance in terms of the control precision and
time response in stabilizing spacecraft during the deployment of the composite laminated solar array, comparing with that of the
conventional PD controller.

1. Introduction

Modern spacecraft often employ large, complex, and
lightweight solar arrays to achieve multiple functionalities
and to provide sufficient power supply during flight [1]. 'e
solar array deployment is a highly dynamic movement that
may affect the spacecraft’s motion [2–4]. In particular, when
the locking operation is performed, the induced impulsive
forces and moments may cause strong vibrations in large-
scale and flexible solar panels. Consequently, it will severely
affect spacecraft’s motions, even leading to a disaster for a
space mission.'erefore, an effective control scheme should
be carried out to stabilize the spacecraft’s motions during the
deployment of solar arrays.

'e first challenge is how to exactly describe the deploy-
ment dynamics of the solar array and evaluate its influence on
the spacecraft main body. 'e spacecraft system is a typical

constrained rigid-flexible coupling multibody system. In ad-
dition, these solar arrays are commonly composed of laminated
shells involving fiber-reinforced composite materials, due to its
high reliability, superior mechanical properties, high stiffness-
to-weight ratio, and low fabrication cost [5–7].'e deployment
of the composite laminated solar array exhibits a strong
nonlinearity coupling between the large-rotation and large-
deformationmotions.'us, an accurate dynamicmodel, which
canwell capture nonlinear characteristics (mainly including the
material and geometric nonlinearity) of the solar array, plays a
crucial role for the control scheme. Over the past few decades,
several scholars have investigated the dynamics of the flexible
multibody system involving the composite laminated plate/
shell structures. Neto et al. [8] described the elastic deforma-
tions of a composite laminated plate undergoing large rigid
body rotations by using the floating frame of the reference
formulation (FFRF). Neto et al. [9] and Ambrósio et al. [10]
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adopted the FFRF to study the deployment of a synthetic
aperture radar antenna comprising composite laminated plates.
'e FFRF is a widely used method describing flexible multi-
body systems in the field of aerospace. However, mode re-
duction methods cannot be applied when the flexible
multibody system experiences large deformations [11]. Addi-
tionally, the incremental finite element formulation and the
large-rotation vector formulation are also used to describe the
flexible multibody systems.'ese two formulations are capable
of describing the large deformations of structures. However,
the incremental finite element formulation cannot obtain the
exact models of rigid motions when nonisoparametric ele-
ments are involved [12], and the large-rotation vector for-
mulation will lead to singularity and unrealistic shear forces
problems due to the redundancy [12]. 'e absolute nodal
coordinate formulation (ANCF), originally developed by
Shabana [13], utilizes global position vector gradients to model
the rotation and deformation fields of the element, which can
well describe the flexible body with large deformation in
multibody applications. Also, it can avoid the coordinate re-
dundancy problem [12] and singularities emerging from the
parameterization of rotations [14] and can also induce a
constant mass matrix. At present, several scholars started to
show interest in studying the deployment dynamics of flexible
multibody systems using ANCF. Li et al. [15] and Li et al. [16]
investigated the deployment dynamics of a flexible solar array.
'e solar array was formulated with the planar deformable
ANCF beam element. 'e planar deformable beam element is
not enough when the solar array is a plate-formed structure in
which the transverse shearing and the in-plane shearing exert
nonnegligible influences on the dynamic response of the
spacecraft. Liu et al. [17] adopted the ANCF to study the
deployment dynamics of a flexible satellite antenna system
comprising composite laminated plates. However, some con-
vergence problems will emerge when the plate element is used
to formulate very thin and stiff plates because of the plane stress
assumption.'erefore, the deployment dynamics of composite
laminated solar arrays still require further improved.

In the past few decades, spacecraft attitude control has
gained huge attention. 'e conventional Proportional-In-
tegration-Derivative (PID) or Proportional-Derivative (PD)
control is the most popular industrial control method for
simple structures due to its simplicity, reliability, and low-
cost implementation [18–23]. 'e conventional PID/PD
control has been widely applied to spacecraft attitude control
systems and showed its feasibility and reliability in practical
applications/implications [24, 25]. When designing a PD
controller, the determination of design parameters is crucial.
However, these design parameters cannot be accurately
determined in most systems. In addition, the conventional
PID/PD controller can accommodate disturbances to a
certain extent, where the performance tends to be degraded
under circumstances of significant disturbing sources [26].
'erefore, it is difficult for the conventional PID/PD con-
trollers to achieve satisfactory performances with increasing
functional requirements of spacecraft [20]. In recent years,
the intelligent control scheme, which has evolved from the
conventional control laws, has drawn more and more at-
tention and performed better under the uncertainties

condition due to its high degree autonomy [27–33]. 'e
fuzzy logic approach is one of the most widely used methods
to observe the uncertainties in complex nonlinear systems
[34–40]. Moreover, researchers have revealed that com-
bining PID/PD with fuzzy logic techniques would result in a
much better control scheme. Wang and Kwok [41] designed
an intelligent control system by using the fuzzy set theory
and the PID principle. Boubertakh et al. [42] proposed auto-
tuning fuzzy PD and PI controllers using the reinforcement
learning algorithm for single-input single-output and two-
input two-output systems. Duan et al. [43] revealed a
property of inherent saturation in the fuzzy PID controller.
Further, Kumar and Kumar [44], Wang et al. [45], and
Gomaa Haroun et al. [46, 47] have introduced new methods
to improve the performance of the fuzzy PID/PD controller.
'ese above studies confirmed that the adaptive fuzzy PID/
PD control scheme could effectively improve the control
performance and efficiency. 'e adaptive fuzzy PID/PD
control scheme has also been gradually applied to the
spacecraft attitude control. Kosari et al. [48] proposed a
fuzzy PID control scheme based on genetic algorithms
during a docking manoeuvre of two spacecraft. Calvo et al.
[49] compared the adaptive fuzzy logic PID controller with
conventional PID controller for the attitude control of a
nanosatellite.'e results showed that the adaptive fuzzy PID
controller was significantly more efficient than the con-
ventional PID. Chen et al. [50] proposed an adaptive fuzzy
PD+ controller for the attitude manoeuvre of a rigid
spacecraft. Chak et al. [51] discussed a new composite
control scheme combining disturbance observer-based
control and fuzzy PD control for flexible spacecraft attitude
control in the presence of external and internal disturbances
caused by flexible appendages. 'e results showed that the
fuzzy PD controller can effectively manoeuvre the spacecraft
to the nadir attitude reference trajectory in the presence of
multiple disturbances. Najafizadeh et al. [52] designed a
novel fuzzy PID controller for geostationary satellite attitude
control, which achieved faster convergence rates and higher
accuracy. Li et al. [4, 53] designed a fuzzy PD controller
to compensate for the attitude change of the spacecraft
caused by the deployment of solar arrays. Although the
above mentioned studies have investigated the adaptive
fuzzy PID/PD control scheme for attitude control of the
spacecraft, there are very few researches on eliminating the
attitude and position drift caused by the deployment of solar
arrays. In addition, modern spacecraft often employ large,
complex, and lightweight solar arrays which are commonly
composed of laminated plates with fiber-reinforced com-
posite materials. 'e flexibility of solar arrays, nonlinearity
of composite material, and other external disturbances may
cause unpredictable rotational and translational motion of
the spacecraft during the deployment of solar arrays.
'erefore, a robust enough control scheme is required to
overcome the model uncertainty and nonlinearity, structural
vibrations of the flexible solar arrays, and the other dis-
turbances in the environment. To the authors’ best
knowledge, studies related to this topic are not sufficient.

Our work aims to develop a constrained rigid-flexible
coupling dynamic model of a spacecraft system equipped
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with laminated solar arrays, involving fiber-reinforced
composite materials, and further to propose an effective
control scheme to stabilize the spacecraft main body during
the deployment of the solar arrays. 'e key points of our
work can be briefly described as follows. (1) A constrained
rigid-flexible coupling spacecraft dynamic model was de-
veloped based on ANCF. 'e dynamic model can accurately
describe the deployment dynamics of the composite lami-
nated solar array undergoing large-rotation and large-de-
formation motions. (2) An adaptive fuzzy PD control
scheme, which can be easily integrated into the spacecraft
dynamic model, was proposed. (3) 'e computation strat-
egies used to solve equations of motion of the spacecraft
were provided in detail. 'e remainder of this paper is
organized as follows. Section 2 first depicts the structure of
the spacecraft system. 'e rigid-flexible coupling spacecraft
dynamic model was then derived in Section 3. After that,
Section 4 reveals the adaptive fuzzy PD control scheme.
Section 5 gives equations of motion with the constrained
rigid-flexible coupling dynamics and their solution strate-
gies. After that, numerical simulations were conducted and
analysed in Section 6. Finally, the whole work was sum-
marised in Section 7.

2. Structure of Spacecraft System

'is section illustrates the structure of a spacecraft with a
deployable composite laminated solar array. As shown in
Figure 1, the spacecraft system is simplified to a main body
and a deployable solar array.'e solar array mainly contains
three types of critical devices, namely, the spring-damper
mechanism (Figure 2(a)), the closed cable loop (CCL)
mechanism (Figure 2(b)), and the latch mechanism
(Figure 2(c)). 'ese devices generate torque to realize the
deployment of the solar array. 'e torque model is given in
Figure 2(d). 'ree assumptions are made for the spacecraft
system. (1) 'e main body and yoke are considered to be a
completely free rigid unit. (2) 'e solar array is assembled
with two flexible solar panels, connected by revolute joints.
(3) 'e solar panel is assumed to be a perfect composite
laminated shell; that is, there is no relative motion between
any two layers of the composite laminated shell.

'e spring-damper mechanism, which is located in the
revolute joint, provides driving torque to deploy the folded
solar array with the expression as

Tdrive,k � Kdrive,k θpre,k − θk􏼐 􏼑 − Ck

dθk

dt
, (1)

where Kdrive,k is the torsion stiffness coefficient of the k-th
spring-damper, Ck is the damping coefficient of the k-th
spring-damper, and θpre,k and θk denote the preload angle
and practical deployment angle of the solar panel,
respectively.

'e CCL mechanism comprises synchronous wheels
fixed on the revolute joint and provides two passive control
torques to synchronize the deployment angles of the solar
panels [54]. 'e control torques can be simply modelled as
[15]

Tccl,1 � Kccl,1 2θ1 − θ2( 􏼁,

Tccl,2 � Kccl,2 2θ1 − θ2( 􏼁,

⎧⎨

⎩ (2)

where Tccl,1 and Tccl,2 are the equivalent synchronous tor-
ques andKccl,1 andKccl,2 are the equivalent torsional stiffness
of the wheels. In addition, θ1 and θ2 are the deployment
angles of the first and the second solar panel, respectively.

A typical latch mechanism is demonstrated in
Figure 2(c). Body A is connected to the body B, and both of
them can rotate around joint C. Cam E is fixed on body A,
and pin F can move on cam E’s surface during the de-
ployment process. Pin F slides into groove D when the
deployment angle reaches the preset lock angle, and, thus,
body A and body B are latched at the expected position. 'e
STEP and BISTOP functions are adopted to simulate this
locking process. When the deployment angle θk increases
from φ1 to φ2, the STEP function correspondingly increases
from h1 to h2. Once the deployment angle θk reaches the
collision point (φ3 ∼ φ4), the BISTOP function begins to
produce torques to push pin F toward the expected angle.
'ese lock torques can be expressed as [15, 53]

Tlock,k � STEP θk,φ1, 0,φ2, 1( 􏼁 × BISTOP θk, _θk,φ3,φ4, Ks, e, c, d􏼐 􏼑,

(3)

where

STEP θk,φ1, h1,φ2, h2( 􏼁 �

0 if θk <φ1,

h1 + h2 − h1( 􏼁
θk − φ1
φ2 − φ1

􏼠 􏼡

2

3 − 2 ×
θk − φ1
φ2 − φ1

􏼠 􏼡 if φ1 ≤ θk <φ2,

1 if φ2 < θk,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BISTOP θk, _θk,φ3,φ4, Ks, e, c, d􏼐 􏼑 �

Max Ks φ3 − θi( 􏼁
e

− _θiSTEP θi,φ3 − d, c, φ3, 0( 􏼁, 0􏼐 􏼑 if θk <φ3,

Min − Ks θk − φ4( 􏼁
e

− _θiSTEP θi,φ4, 0,φ4 + d, c( 􏼁, 0􏼐 􏼑 if θk >φ4,

⎧⎪⎪⎨

⎪⎪⎩

(4)
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where _θk is the relative rotation velocity of the k-th solar
panel. Ks and c are the equivalent stiffness and damping
coefficients of the latch mechanism, respectively, d denotes
the distance depth, and e is an exponent.

3. Formulation of Rigid-Flexible Coupling
Spacecraft System

'is subsection is divided into three parts to introduce the
formulation of the spacecraft system, corresponding to the
motion of the rigid main body, formulation of the com-
posite laminated solar panel, and the motion of con-
straints. Without loss of generality, the spacecraft main
body is regarded as a rigid body of arbitrary shape. As
exhibited in Figure 3, an arbitrary point Q is attached to
the rigid body. 'e global position vector of the point Q
can be written as

rQ � r + As′, (5)

where r ∈ R3×1 is the global position vector of the origin
of local coordinate frame x-y-z which is fixed on the rigid
body. It should be noted that the local coordinate frame is
selected with its origin at the center of mass of the body to
simplify the form of the formulation. In equation (5),
the local position of the point s′ � x y z􏼂 􏼃

T is a constant
vector because of the rigid body assumption, and A is the

transformation matrix that defines the orientation of the
local coordinate frame with respect to the global refer-
ence frame. 'us, the velocity of the point Q can be
expressed as

_rQ � _r + _As′ � _r + 􏽥ωAs′, (6)

and the acceleration can be written as

€rQ � €r + €As′ � €r + 􏽥_ωAs′ + 􏽥ω􏽥ωAs′, (7)

where ω is the angular velocity of the local coordinate frame
with respect to the global coordinate frame. Without the
singularity problem, the quaternion p is applied to describe
the attitude of the spacecraft main body with the expression
as

p � cos
θ
2
, u sin

θ
2

􏼢 􏼣

T

� cos
θ
2
, u1 sin

θ
2
, u2 sin

θ
2
, u3 sin

θ
2

􏼢 􏼣

T

,

(8)

where u � u1 u2 u3􏼂 􏼃 represents the Euler axis and θ is the
angle of the rotation. And then, the generalized coordinate
vector of the body can be defined with the quaternion as

qb �
r

p
􏼢 􏼣. (9)

Solar panel

Spacecra� main body
Yoke

Spacecra�
main body

Revoulte joint

Closed cable loop

Spacecra�
main body

Composite laminated solar panel

Side view

Stereoscopic view

Top view

Figure 1: Scheme diagram of the spacecraft structure.
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'e virtual work done by the inertial force can be
expressed as [55]

δW
b
ine � − δr

T
m€r − δp

T 4G
T
JG €p − 8 _G

T
J _Gp􏼒 􏼓 � − δq

T
b

m

4GTJG
􏼢 􏼣€qb + δq

T
b

0

8 _G
T
J _Gp

􏼢 􏼣, (10)

where m is the mass of the body, J is the constant inertia
tensor which is defined as

J � 􏽚
m

y2 + z2 − xy − xz

− xy x2 + z2 − yz

− xy − yz x2 + y2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dm, (11)

and G is the function of the quaternion p with the following
expression:

G � − u sin
θ
2
, − 􏽥u sin

θ
2

+ cos
θ
2

I􏼢 􏼣. (12)

'e generalized mass matrix of the body can be defined
as

Mb �
m

4GTJG
􏼢 􏼣. (13)

If an external force Fb acts on the body at point Q, the
virtual work of the body done by the external force can be
obtained by

δW
b
ext � δr

T
Fb + δp

T 2G
T
n􏼐 􏼑 � δq

T
b

Fb

2GTn
􏼢 􏼣, (14)

where n is the torque generated by the external forces acting
at a distance from the origin of the local coordinate frame.
'e detailed derivation of the virtual work done by the
inertial force and the external force can be found in Ap-
pendix A. Using equations (10) and (14), we can define the
generalized external force as

Torsional spring

Damper

(a)

Tccl,1

Tccl,2

(b)

A B

D

E

C F

A

B

D

E

C
F

A
B

D

E

C
F

Solar panel 2

Solar panel 1

A

B

E

C

D
FSolar panel 1 Solar panel 2

Initial phase Lock phase

(c)
Tdrive,2

Tlock,1

Tdrive,1

Tlock,2

Tccl,2

Tdrive,2

Tdrive,1

Tccl,1
Spacecra�
main body 

θ1

θ2

(d)

Figure 2: Representations of the solar array’s mechanisms and torque models. (a) Spring-damper mechanism. (b) CCL mechanism. (c)
Latch mechanism. (d) Torque model of the solar array.
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Q
b
ext �

Fb

2GTn + 8 _G
T
J _Gp

⎡⎣ ⎤⎦. (15)

'e deformable ANCF laminated shell element, origi-
nally proposed by Yamashita et al. [56, 57], is employed to
formulate the composite laminated solar panel. As shown in
Figure 4, the global position vector of an arbitrary point P
whose local coordinate is x y z( 􏼁 in shell element can be
expressed as

rP � rm + zrn � Smqm + zSmqn � Sm zSm􏼂 􏼃
qm

qn

􏼢 􏼣, (16)

where rm is the global position vector of the vertical pro-
jection point of P on themiddle surface of the element and rn

is the transverse gradient vector that describes the orien-
tation and deformation of the infinitesimal volume in the
element. 'e global position vector of four corner nodes in
the middle surface of the element and their transverse
displacement gradient can be, respectively, written as

qm � rT1 rT2 rT3 rT4􏽨 􏽩
T
,

qn � zr1
zz

􏼐 􏼑
T zr2

zz
􏼐 􏼑

T zr3
zz

􏼐 􏼑
T zr4

zz
􏼐 􏼑

T
􏼔 􏼕

T
,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

where ri ∈ R3×1(i � 1, 2, 3, 4) is the global position vector
of each node. In (16), Sm is the element shape function
defined as [43]

Sm � S1I S2I S3I S4I􏼂 􏼃, (18)

where I ∈ R3×3 is the identity matrix and Si(i � 1, 2, 3, 4)

are components of the shape function obtained by

S1 �
1
4

(1 − ξ)(1 − η), S2 �
1
4

(1 + ξ)(1 − η),

S3 �
1
4

(1 + ξ)(1 + η), S4 �
1
4

(1 − ξ)(1 + η),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

where ξ � 2x/l and η � 2y/w. l and w are lengths along the x

and y axes, respectively. 'en, equation (16) can be sim-
plified as

rP � Sqe (20)

where
S � Sm zSm􏼂 􏼃,

qe � qm qn􏼂 􏼃
T
.

⎧⎨

⎩ (21)

According to the kinematic description of the element,
the Green-Lagrange strain tensor is defined as

ε �
1
2

zrP

zx

zX

zx
􏼠 􏼡

− 1
⎛⎝ ⎞⎠

T
zrP

zx

zX

zx
􏼠 􏼡

− 1
⎛⎝ ⎞⎠ − I⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (22)

where x and X denote the local and the global position
vector of the material point at the reference configuration,
respectively. 'e element locking may occur in the de-
formable ANCF shell element due to the use of low-order
polynomials in the shape function. 'e element lock leads to
slower convergence in numerical iterations and erroneous
stiffer bending behaviour. 'us, the assumed natural strain
in [58, 59] and the enhanced assumed strain in [60, 61] are
adopted to systematically alleviate the element locking. 'e
modified strain vector can be defined as

􏽢ε � ε + εEAS, (23)

where εEAS denotes the enhanced assumed strain vector
which is referred in literature [56]. All layers with different
fiber angles are assumed to be bonded together to produce
the desired material properties. 'erefore, the virtual work
done by elastic forces of the laminated shell element with n
layers can be expressed as [57]

δW
e
ela � − δq

T
e 􏽘

n

i�1
􏽚

Vi

zεi

zqe

􏼠 􏼡

TzWi 􏽢εi􏼐 􏼑

zεi
dV

i
, (24)

where Vi is the element volume of the i-th layer at the
reference configuration and Wi is an elastic energy density
function that is described in Appendix B. Correspondingly,
the generalized elastic forces of the element can then be
written as

Qela � 􏽘
n

i�1
􏽚

Vi

zεi

zqe

􏼠 􏼡

TzWi 􏽢εi􏼐 􏼑

zεi
dV

i
. (25)

Q

X

Y

Z

o

r

f

g

h

G-RF

L-RF
o

zx

y

S′

rQ

Figure 3: Kinematic description of the rigid body.
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'e shape function of the element is not time-dependent,
and, then, the element’s kinetic energy can be defined as

T �
1
2

􏽘

n

k�1
􏽚

Vi

ρi
_rP( 􏼁

T
_rPdV

i
�
1
2

_q
T
e 􏽘

n

k�1
􏽚

Vi

ρi
S
T
SdV

i
_qe,

(26)

where ρi is the material density of the i-th layer at the
reference configuration. 'en, the constant mass matrix can
be obtained by

Me � 􏽘

n

k�1
􏽚

Vi
ρi

S
T
SdV

i
. (27)

Hence, the virtual work done by the inertia forces on the
element can be expressed as

δW
e
ine � − δq

T
e Me €qe( 􏼁. (28)

Denoting by Fe the external force acts on the element, we
can write the following virtual work:

δW
e
ext � δr

T
PFe � δq

T
e S

T
Fe􏼐 􏼑. (29)

'e generalized external force vector of the element can
be obtained by

Q
e
ext � S

T
Fe. (30)

It should be noted that the driving torques of the spring-
dampers in equation (1), the synchronization torques of the
CCLmechanisms in equation (2), and the lock torques of the
latch mechanisms in equation (3) are regarded as the ex-
ternal forces of the shell. 'ese torques are then integrated
into the generalized external force vector. With the as-
sumption that the structural damping exists in the shell, the
virtual work done by the damping forces can be defined as

δW
e
dam � − δq

T
e D _qe, (31)

where D � ζMe is the damping matrix and ζ is the damping
coefficient.

'e rigid main body and flexible solar panels are linked
by revolute joints, which can be represented by a constraint
equation. As depicted in Figure 5, a shell element is con-
nected to a rigid body at point P by a revolute joint, and the
constraint equation can be defined as [58, 59]

Φ qe, qb, t( 􏼁 �

re − rb

vT1 v

vT2 v

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0, (32)

where qe and qb are the generalized coordinate vectors of
point P defined on element and rigid body, respectively, re

and rb are the global position vectors of point P defined on
the element and rigid body, respectively, andvi (i � 1, 2)and
v are vectors defined along the joint axis on shell element and
rigid body, respectively. We can then obtain the virtual work
done by constraint forces [62]:
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Figure 4: Kinematic description of the deformable ANCF shell element.
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Figure 5: Kinematic description of the revolute joint.
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δWcon � λTδΦ � λT
zΦ
zqe

δqe + λT
zΦ
zqb

δqb � δq
T
e Φ

T
qe
λ􏼐 􏼑 + δq

T
b Φ

T
qb
λ􏼐 􏼑,

(33)

where λ is the Lagrange multipliers vector corresponding to
the vector Φ. Φqe

� zΦ/zqe and Φqb
� zΦ/zqb are Jacobian

matrices with expression as follows:

zΦ
zqe

zΦ
zqb

􏼢 􏼣 �

zre

zqe

−
zrb

zqb

vT
zv1

zqe

vT1
zv

zqb

vT
zv2

zqe

vT2
zv

zqb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

4. Adaptive Fuzzy PD Control Scheme

As discussed in the previous section, the deployment of solar
arrays may cause attitude and position perturbations within
spacecraft. We first observe the conventional PD control
scheme in the elimination of position deviations and attitude
stabilization during the deployment of solar arrays.

It is well known that reaction wheel actuators are com-
monly employed to provide control forces and torques, which
can accommodate position deviations and finite rotations
caused by the deployment of solar arrays. Assuming that
ra(t) � ra,x ra,y ra, z􏽨 􏽩 and rd(t) � rd,x rd,y rd,z􏽨 􏽩 are the
actual and the desired global position coordinate vectors of the
main body, respectively, and _ra � _ra, x _ra,y _ra,z􏽨 􏽩 and _rd �

_rd,x _rd,y _rd,z􏽨 􏽩 are the actual and desired velocity vectors of
the main body, respectively, a PD controller for eliminating
position deviations is presented as

τf
(t) � P

f
ep(t) + D

f
_ep(t), (35)

where

P
f

�

K
f
P,x 0 0

0 K
f

P,y 0

0 0 K
f

P,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D
f

�

K
f
D,x 0 0

0 K
f
D,y 0

0 0 K
f
D,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ep(t) �

rd,x − ra,x

rd,y − ra,y

rd,z − ra,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

_ep(t) �

_rd,x − _ra,x

_rd,y − _ra,y

_rd,z − _ra,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(36)

in which K
f
P,i(i � x, y, z) and K

f
D,i(i � x, y, z) are the pro-

portional and differential gains of the PD controller, re-
spectively. 'en, the virtual work done by these control
forces can be expressed as

δWf � δr
Tτf

. (37)

According to Euler’s theorem of finite rotations of the
rigid body, an arbitrary finite rotation of a rigid body over a
fixed point can always be represented by the Euler axis and
the angle of rotation [63]. In view of the attitude stabili-
zation, we exploit three quaternions, including error qua-
ternion pe, actual quaternion pa, and desired quaternion pd,
to describe the attitude deviation of the main body. 'e
mathematical relationships of these quaternions are

pe � pa( 􏼁
− 1

pd. (38)

Now, three equivalent error angles θx θy θz􏽨 􏽩 are
defined using the error quaternion:

θx � pe(2)pe(1),

θy � pe(3)pe(1),

θz � pe(4)pe(1),

⎧⎪⎪⎨

⎪⎪⎩
(39)

where pe(i), (i � 1, 2, 3, 4) are four components of the error
quaternion pe. Denoting the actual and the desire angular
velocity vectors by ωa � wa,x wa,y wa,z􏽨 􏽩 and
ωd � wd,x wd,y wd,z􏽨 􏽩, respectively, we can present the PD
controller for attitude stabilization as

τt
(t) � P

t
ea(t) + D

t
_ea(t), (40)

where

Pt
�

Kt
P,x 0 0

0 Kt
P,y 0

0 0 Kt
P,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Dt
�

Kt
D,x 0 0

0 Kt
D,y 0

0 0 Kt
D,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ea(t) �

α

β

c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

_ea(t) �

wd,x − wa,x

wd,y − wa,y

wd,z − wa,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(41)

in which Kt
P, i(i � x, y, z) and Kt

D, i(i � x, y, z) are the
proportional and differential gains of the PD controller,
respectively. 'us, the virtual work done by these control
torques can be obtained by

δWt � δp
Tτt

. (42)

It is a challenging task to determine proper PD parameters
when considering the flexibility of solar arrays, nonlinearity of
the composite material, and other uncertainties. As a result, an
adaptive fuzzy PD control scheme was proposed. 'e block
diagram of the proposed control scheme is depicted in Figure 6.
'e adaptive fuzzy PD controller primarily consists of two parts:
one is a fuzzy logic system and the other is a PD controller. In the
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control loop, the control gains are modified online using the
fuzzy rules and sent to the PD controller. Firstly, error signals are
computed according to the state variables of the spacecraft and
the desired variables. 'e symbol e in the diagram includes
actual position errors rd − ra and attitude angle errors
θx θy θz􏽨 􏽩 while the symbol ec represents velocity errors _rd −

_ra and angular velocity errors ωd − ωa. 'ese error signals are
fuzzified by using membership functions and sent to the fuzzy
inference engine. After that, the fuzzy inference engine performs
the fuzzy reasoning on the basis of fuzzy rules to obtain the fuzzy
proportional and differential gains. Finally, the PD controller
updates its feedback gains in real time according to these fuzzy
gains. 'e control forces and torques generated from the PD
controller act on the spacecraft main body. Control actuators
remain active until those error signals reach zero.'e fuzzy logic
system mainly includes four components, namely, fuzzification,
fuzzy rules, fuzzy inference engine, and defuzzification. Fuzzi-
fication maps the input state errors (e and ec) into two fuzzy
variables (E and EC) that are defined with three fuzzy sets where
the associated linguistic terms are negative (N), zero (Z), and
positive (P) by using membership functions. 'e fuzzy IF-
THEN rules are adopted to relate these fuzzy sets to output fuzzy
gains with the Mamdani-type fuzzy inference [53]. Defuzzifi-
cation converts the output linguistic variables into precise nu-
merical values.'e center-of-gravitymethod is used to defuzzify
the subset in the fuzzy logic system. Now, we give the expression
of the control forces as follows:

τ∗f(t) � P
∗f

ep(t) + D
∗f

_ep(t), (43)

where

P
∗f

�

K
f
P,x + ΔKf

P,x 0 0

0 K
f

P,y + ΔKf

P,y 0

0 0 K
f
P,z + ΔKf

P,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D
∗f

�

K
f

D,x + ΔKf

D,x 0 0

0 K
f
D,y + ΔKf

D,y 0

0 0 K
f

D,z + ΔKf

D,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(44)

in which ΔKf
P, i and ΔK

f
D, i (i� x, y, z) are the fuzzy incre-

ments of the proportional and differential gains, respec-
tively. 'e expression of the control forces can be written as

τ∗t(t) � P
∗t

ep(t) + D
∗t.

_ep(t), (45)

where

P
∗ t

�

Kt
P,x + ΔKt

P,x 0 0

0 Kt
P,y + ΔKt

P,y 0

0 0 Kt
P,z + ΔKt

P,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D
∗ t.

�

Kt
D,x + ΔKt

D,x 0 0

0 Kt
D,y + ΔKt

D,y 0

0 0 Kt
D,z + ΔKt

D,z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(46)

in which ΔKt
P, i and ΔKt

D, i (i� x, y, z) are the fuzzy incre-
ments of the proportional and differential gains, respec-
tively. 'e total virtual work done by these forces and
torques can be expressed as

δW
b
fuz � δW

∗
f + δW

∗
t � δr

Tτ∗f + δp
Tτ∗t � δq

T
b

τ∗f

τ∗t
⎡⎣ ⎤⎦,

(47)

and then the generalized control force can be defined as

Q
b
fuz �

τ∗f

τ∗t
⎡⎣ ⎤⎦. (48)

5. Equations of Motion and Solve Strategy

According to the principle of virtual work, the variation
equations of the whole rigid-flexible coupling spacecraft
system can be written as

δW
b
ine + δW

b
ext􏼐 􏼑 + δW

e
ine + δW

e
ela + δW

e
ext + δW

e
dam( 􏼁 + δWcon � 0.

(49)
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Figure 6: Schematic of the adaptive fuzzy PD control scheme.
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Substituting equations (10), (13)–(15), (24), (25),
(28)–(31), (33), and (47) into (49) yields

− δq
T
b Mb €qb( 􏼁 + δq

T
b Q

b
ext + δq

T
b Q

b
fuz􏽨 􏽩 + δq

T
e Φ

T
qe
λ􏼐 􏼑 + δq

T
b Φ

T
qb
λ􏼐 􏼑

+ − δq
T
e Me €qe( 􏼁 + δq

T
e Q

e
ela + δq

T
e Q

e
ext − δq

T
e D _qe􏽨 􏽩 � 0.

(50)

Using equation (32), we can obtain equations of motion
of the spacecraft:

M€q +ΦTqλ + Q(q) � F(q, _q),

Φ(q, t) � 0,

⎧⎨

⎩ (51)

where

M �
Mb

0
􏼢

0

Me

􏼣,

Q(q) �
0

− Qe
ela

􏼢 􏼣,

F(q, _q) �
Qb

ext + Qb
fuz

Qe
ext − D _qe

⎡⎣ ⎤⎦,

q �
qb

qe

􏼢 􏼣.

(52)

'eNewmark method is used to discretize equation (51)
as

M€qn+1 +ΦT
q λn+1 + Q qn+1( 􏼁 � F qn+1, _qn+1( 􏼁,

Φ qn+1, tn+1( 􏼁 � 0,

⎧⎨

⎩ (53)

where

qn+1 � qn + h _qn +
h2

2
(1 − 2β)€qn + 2β€qn+1( 􏼁,

_qn+1 � _qn + h (1 − c)€qn + c€qn+1( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(54)

where β and c are parameters for determining iteration
convergence and accuracy, respectively. 'e Newmark
method are generally poor in solving the dynamics problems
of the multibody system with high-frequency responses [64].
Additionally, spurious high-frequency responses may exist
in the spacecraft system, mainly due to the flexibility of solar
arrays. 'us, it is desirable for an algorithm with a con-
trollable numerical dissipation which can well-preserve the
low-frequency responses and damp the high-frequency re-
sponses. Negrut et al. [65] proposed an HHT-based algo-
rithm for the index 3 differential-algebraic equations of
multibody systems, known as HHT-I3. According to ANCF,
it has been demonstrated that the HHT-I3 method’s high-
frequency responses can be filtered out while preserving
accuracy [66]. According to the HHT-I3 method, the iter-
ative form can be written as [67]

zN1

z€qn+1

zN1

zλn+1

zN2

z€qn+1

zN2

zλn+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Δ€qn+1

Δλn+1

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �

N1

N2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (55)

where

N1 �
1

1 + η
M€qn+1 +ΦTqλn+1 + Q qn+1( 􏼁 − F qn+1, _qn+1( 􏼁 −

η
1 + η
ΦTqλn + Q qn( 􏼁 − F qn, _qn( 􏼁􏽨 􏽩,

N2 �
1
βh2Φ qn+1, tn+1( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zN1

zλn+1
� ΦTq ,

zN2

zλn+1
� 0,

zN1

z€qn+1
�

1
1 + η

M +
zQ

zqn+1

zqn+1

z€qn+1
−

zF

zqn+1

zqn+1

z€qn+1
+

zF

zqn+1

z _qn+1

z€qn+1
􏼠 􏼡,

�
1

1 + η
M +

zQ

zqn+1
−

zF

zqn+1
􏼠 􏼡βh

2
−

zF

zqn+1
hc,

zN2

z€qn+1
�

1
βh2

zN2

zqn+1

zqn+1

z€qn+1
� Φq,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(56)
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where β � (1 − η)2/4 and c � 0.5 − η, η ∈ [− (1/3) 0], and
the parameter η is a numerical damping index. Converting
equation (55) into the explicit format at iteration k yields

1
1 + η

M +
zQ

zqn+1
−

zF

zqn+1
􏼠 􏼡βh

2
−

zF

zqn+1
hc ΦT

q

Φq 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k)

Δ€qn+1

Δλn+1

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

(k)

�
N1

N2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

(k)

.

(57)

'us, the iteration can be written as

€qn+1

λn+1
􏼢 􏼣

(k+1)

�
€qn+1

λn+1
􏼢 􏼣

(k)

−
Δ€qn+1

Δλn+1
􏼢 􏼣

(k)

, (58)

where the initial step can be set as [67]
_q0 � q0 � 0,

€q0 � M− 1F.
􏼨 (59)

6. Results and Discussion

6.1. Model Parameters. 'e solar array deployment is di-
vided into three phases, namely, the initial phase, the de-
ployment phase, and the postlock phase (see Figure 7).
During the initial phase, the solar panels are folded and set
parallel to each other. Once the spacecraft is launched into
its free-flying orbit, the solar panels are driven to deploy by
the preloaded spring-damper mechanism, and the CCL
mechanism ensures the synchronous deployment. When the
solar panels are deployed on the same spatial plane, the lock
torques provided by the latch mechanism begin to confine
relative rotation of the panels. At this time and thereafter, the
solar array deployment enters its postlock phase. 'e global
coordinate system, which is the absolute reference for the
spacecraft system’s motions, is set up and its origin is at the
center of mass of spacecraft main body. 'e geometrical
dimensions of the vital components of the system are labeled
in the figure.

Several simulations are conducted to confirm the ef-
fectiveness of the proposed control scheme. It is assumed
that the geometrical dimensions and material properties of
the main body as well as physical parameters of the solar
array mechanisms keep identical in all simulations. Simu-
lation parameters are listed in Table 1. 'e numerical
simulations for the proposed adaptive fuzzy PD control
scheme were performed under cosimulation of Visual Stuido
2017 and MATLAB R2017 software. In these numerical
calculations, the adaptive fuzzy PD control algorithms are
implemented by MATLAB/Simulink, and the numerical
algorithms for solving the equations of the proposed rigid-
flexible coupling dynamic model are implemented by C++
programs. Each flexible solar panel is divided into 120
elements.

6.2. Model Validation. In this subsection, two simulations
are carried out to verify the proposed model. 'e first
simulation presents a cantilevered shell subjected to a ver-
tical force to reveal the mechanical properties of the

deformable ANCF laminated shell element adopted in this
paper. As shown in Figure 8, a rectangular cantilevered
composite laminated shell with four layers (0/45/− 45/0) is
subjected to a force in the Z direction. 'e geometric size of
the composite laminated shell is 5× 3× 0.008m. 'e ma-
terial properties of these four layers are the same: Young’s
modulus E1 � 6.78×108 Pa, E2 � E3 � 4.08×108 Pa, Shear
modulus G12 �G13 �1.20×108 Pa, G23 � 4.50×108 Pa, Pois-
son’s ratio v12 � v13 � v23 � 0.3, and material density
ρ� 150 kg/m3. A vertical force in the Z direction is applied
on point B which is located at the far right corner of the shell
(viewed from the clamped boundary).

A contrast study is made between the deformable
ANCF laminated shell and the laminated shell with finite
membrane strains modelled by ABAQUS S4R elements. As
shown in Figure 9, the displacement responses at point B
are compared along the X (Figure 9(a)), Y (Figure 9(b)),
and Z (Figure 9(c)) directions. 'e displacement curves
obtained by the deformable ANCF laminated shell ele-
ments match well with those obtained by the ABAQUS
S4R laminated shell element, which indicate that the de-
formable ANCF laminated shell element in this paper
clearly describes a flexible body undergoing large
deformations.

'e spacecraft in this study is a typical rigid-flexible
coupling system with a flexible solar array formulated with
deformable ANCF composite laminated shell element. An
identical rigid-flexible coupling model was achieved by
using the cosimulation of ADAMS-ABAQUS. 'e rigid
main body is modelled by ADAMS software, and the
flexible solar panels are constructed of largely deformable
ABAQUS S4R laminated shell element. Figure 10 shows the
comparison results for the angular displacements of the
two solar panels. As illustrated in Figures 10(a) and 10(b),
the angular displacement curves obtained by the proposed
model almost coincide with those obtained by ADAMS-
ABAQUS software, suggesting that the proposed model is
valid.

6.3.DynamicResponses of Spacecraft System. 'is subsection
presents the position and attitude responses of the main
body during the deployment of the solar array. Figure 11
shows the solar panel deployment process. Figures 11(a) and
11(b) depict the angular displacements of solar panel 1 and
solar panel 2, respectively. In the initial phase, the solar
panels are folded, as well as setting parallel to each other, and
their angular displacements are zero or near zero. After the
solar array is released, the two solar panels are deployed
through the torsional spring-damper mechanisms. 'e
deployment angles are controlled by the CCL mechanism,
with a proportionality coefficient of 0.5. 'e system is then
locked by the latch mechanism at about the 18th second,
when the lock torques are produced by the latch mechanism
to prevent relative rotation of the two panels. In the postlock
phase, there are some slight oscillations in the angular
displacements of the panels. 'ese oscillations are mainly
caused by impact forces from the latch mechanisms. After
that, the system maintains a relatively steady deployment
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state in the plane with deployment angles of nearly 0.5 π for
panel 1 and nearly π for panel 2.

'e torque responses of three types of mechanisms
mentioned in the previous section are critical for the whole

spacecraft system. Figure 12 shows the torque responses of
these mechanisms for solar array deployment. Figure 12(a)
shows that the driving torques of the two spring-dampers
reach the peak during the initial phase, and, then, both
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Figure 7: Deoployment process of the solar array.

Table 1: Physical parameters of the spacecraft system.

Parameter item Parameter value
Size of the main body (m) 1.5×1.5× 2.0
Material density of the main body (kg/m3) 2400
Length of panels (m) 1.5
Width of panels (m) 2.0
'ickness of panels (m) 0.06
Material density of panels (kg/m3) 100
Young’s modulus of panels (Pa) E1 � 6.78×108, E2 �E3 � 4.08×108

Poisson’s ratio of panels (-) v12 � v13 � v23 � 0.3
Shear modulus of panels (Pa) G12 �G13 �1.2×108, G23 � 4.5×108

Layer number of panels (-) 4
Fiber angle relative to the Y direction (°) 0/90/90/0
Material thickness of panels (m) 0.015/0.015/0.015/0.015
Torsional stiffness of spring-damper 1 (Nm/rad) 0.25
Torsional stiffness of spring-damper 2 (Nm/rad) 0.085
Damping coefficient of spring-damper 1 (N/(m/s)) 0.025
Damping coefficient of spring-damper 2 (N/(m/s)) 0.015
Equivalent cable stiffness of CCL 1 (Nm/rad) 60
Equivalent cable stiffness of CCL 2 (Nm/rad) 15
Equivalent stiffness of latch 1 (Nm/rad) 2.5×104

Equivalent stiffness of latch 2 (Nm/rad) 1× 104

Damping coefficient of latch 1 (N/(m/s)) 2.5×103

Damping coefficient of latch 2 (N/(m/s)) 1× 103

Exponent of latch 1 and latch 2 (-) 1.5
Distance depth of latch 1 and latch 2 (°) 0.01
Time step (s) 0.001
Total time (s) 40
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torques gradually converge to zero during the deployment
phase and reach a small neighbourhood of zero during the
postlock phase. 'e driving torques of the two spring-
dampers vary with the phases of the solar array deploy-
ment. Moreover, the torques of the two spring-dampers

still demonstrate a trend of obvious oscillations in the
neighbourhood of zero in the postlock phase. However,
the oscillations gradually decrease over time due to
damping from the spring-dampers. Figure 12(b) illus-
trates the trends of synchronous control torque through
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Figure 9: Displacement responses of the cantilever composite laminated shell.
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the CCL mechanism. 'e control torques of the two CCL
mechanisms increase with small fluctuations in the early
deployment phase and then reach the larger fluctuations in
the later deployment phase. Figure 12(b) indicates that greater
control torques produced from the CCL mechanism are
required when the first panel becomes more out of sync with
the second panel. After the two panels are locked, the control
torques fluctuate around the domain of zero, indicating
asynchronous oscillations within the two panels. 'e lock
torque curves from the latch mechanism are illustrated in
Figure 12(c). 'ese results show that impulsive forces are
induced when the locking operation is performed to lock the
panels in a proper position. 'ese impulsive forces are
generally much larger than those from the other two
mechanism types, which can lead to strong vibrations in the
solar panels and may also cause the position deviations and
attitude changes of the spacecraft main body. Moreover, the
impulsive forces of the second latch mechanism are much

greater than those of the first latch mechanism. 'erefore,
several methods should be applied to avoid excessive im-
pulsive forces from the latch mechanism.

Figure 13 presents the displacement responses of the
main body during the deployment of the solar array. As
shown in Figures 13(a), 13(b), and 13(c), the main body
gradually deviates from its original position during the
deployment phase. Moreover, the displacements of the main
body in the X and Y directions are much larger than those in
the Z direction. On the other hand, it is also shown in
Figures 13(a) and 13(b) that the deviations climb to the top
and remain steady in the postlock phase. 'e results
demonstrate that the deployment of the solar array mainly
causes the position deviations in the X and Y directions in
the deployment phase.'erefore, the position changes in the
X and Y directions are the main considerations in the
controller design, while the change in Z direction is
negligible.
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Figure 14 illustrates the velocity responses of the main
body during the deployment of solar arrays. 'e reference
line in the following figures indicates that the value always
keeps zero. As shown in Figure 14(a), the velocity signal
gradually increases in the first 15 seconds and then decreases
dramatically along the X direction throughout the deploy-
ment phase. From the zoomed part in Figure 14(a), there is a
minor fluctuation in the postlock phase. As is illustrated in
Figure 14(b), the velocity of the spacecraft main body in-
creases steadily in the Y direction during the deployment
phase and reaches a peak of 0.8×10− 3m/s. 'is decreases
significantly after the solar panels are locked by the latch
mechanisms. 'e velocity in the Y direction oscillates at a
higher amplitude than it does in the X direction during the
postlocking phase. 'e velocity in the Z direction is five
orders of magnitude lower compared with that in the other
two directions (see Figure 14(c)). Velocities in the X and Y

directions are therefore more significant in the controller
design.

Figure 15 reveals the attitude responses of the main body
during the deployment of the solar array system. As dem-
onstrated in Figure 15(a), the rotation vector of the main
body is almost constant with values (0.0, 0.0, 1.0) during all
phases, which indicates that the main body approximately
rotates around the Z axis during the deployment of solar
arrays. As illustrated in Figures 15(b) and 15(c), the rotation
angle and angular velocity of the main body have similar
change tendencies during the deployment phase and reach
the highest peak when the latch mechanisms lock the solar
panels. After the solar panels are locked, the rotation angle
and velocity of the main body present obvious fluctuations.
Consequently, the rotation angle and velocity around the Z
axis are indispensable variables to be taken into account in
the controller design.
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Figure 12: Torque responses of the solar array mechanisms.
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6.4. Conventional PD Control Scheme. 'e subsection
presents a conventional PD control scheme to eliminate the
position deviations and attitude changes of the spacecraft
main body. As mentioned in the previous sections, the
position deviations (X and Y directions) and attitude change
(rotation around the Z axis) are major considerations in the
control design. 'e desired displacements rd,x rd,y􏽨 􏽩 and
velocities _rd,x _rd,y􏽨 􏽩 in equation (43), the desired rotation
angle c , and angular velocity wd, z in equation (45) are set to
be zero. Two groups of the simulation cases were preformed
to investigate the effects of the PD parameters on the control
performance. 'e parameters of these simulation cases are
listed in Table 2. Figure 16 depicts the evolution of the
position and attitude responses of the spacecraft in these
simulation cases.

Figure 16 shows that all the state variables of the
spacecraft main body converge nearly to zero, indicating that
the spacecraft system is stabilized successfully under the
conventional PD control scheme. In Group 1, the differential
gain KD is fixed, while the proportional gain KP gradually
increases in these simulation cases. As illustrated in
Figures 16(a) and 16(c), the displacement deviations of the
spacecraft in the X and Y directions significantly decrease
and expedite the convergence to zero with the increase of the

proportional gain KP. 'e attitudes of the spacecraft are also
obviously stabilized as shown in Figure 16(e). 'e pro-
portional term of the PD controller provides an overall
control action proportional to the error signals through the
gain factor, which means that the steady-state error and rise
time of the system reduced by increasing the proportional
gain factor. However, an increase in the proportional gain
factor also decreases the stability margins and may induce
oscillations in the system. It is insufficient to use only the
proportional gain factor to improve the system responses. In
Group 2, the proportional gain KP is fixed, while the dif-
ferential gain KD increases in order to evaluate the effects of
the differential term of the PD controller. As depicted in
Figures 16(b) and 16(d), the displacement responses of the
spacecraft in the X and Y directions have been improved to a
certain extent with the increase of the differential gain KD.
After the solar panels are locked, the rotation angle of the
spacecraft has obvious fluctuations. From the zoomed part
in Figure 16(f ), the amplitude of these fluctuations signif-
icantly decreases with the increase of the differential gainKD.
'e differential term of the PD controller is capable of
predicting the trend of error signals and thus improving the
transient responses and system stability through high-fre-
quency compensation. However, the differential term of the
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Figure 13: Displacement responses of the spacecraft main body in the three directions.
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PD controller is sensitive to the interference noises of the
system. 'e improper differential gain factor is likely to
reduce the ability to suppress the interference noises.
'erefore, the proportional and differential terms of the PD
controller must be tuned jointly for optimum performance.
An online adjustment for the PD controller is required to
stabilize the spacecraft.

6.5. Adaptive Fuzzy PD Control Scheme. As discussed in the
previous subsection, the conventional PD controller can
stabilize the spacecraft system successfully. However, the
parameters of the PD controller cannot be accurately de-
termined in the presence of uncertainty and nonlinearity
within the spacecraft system. 'is subsection presents an
adaptive fuzzy PD control scheme. According to the dis-
cussion about the effects of the PD control parameters on the
control performance in the previous section, we designed the
fuzzy rules of the fuzzy PD controller as listed in Table 3 [4].

'e membership functions were chosen to be triangular
and S-shaped, due to their simplicity and sensitivity to small
variations. Figure 17 shows these membership functions
chosen for both inputs and outputs of each fuzzy tuner.
Figures 17(a) and 17(c) depict the membership functions of
the fuzzy tuner to characterize the position errors in the X
and Y directions, respectively, and Figure 17(e) illustrates the
membership functions to deal with attitude angle errors.
Figures 17(b), 17(d), and 17(f) show the corresponding
membership functions for the velocity errors. Figures 17(g)
and 17(h) depict the membership functions for the incre-
ments of the proportional and differential gains,
respectively.

Figure 18 compares the position and attitude re-
sponses between the fuzzy PD control scheme and the
conventional PD control scheme. As shown in
Figures 18(a) and 18(c), the position deviations of the
spacecraft main body in the X and Y directions for the
fuzzy PD controller are generally less than those for the
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Figure 14: Velocity responses of the spacecraft main body in the three directions.
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conventional PD control scheme. 'e conventional PD
controller requires about 30 s to successfully stabilize the
spacecraft system in the X direction, while this takes about
20 s for the fuzzy PD controller. In the Y direction, the
spacecraft main body presents obvious fluctuations after

the solar array is locked and requires more time than the X
direction to stabilize. 'e amplitude of these fluctuations
for the fuzzy PD controller is generally smaller than those
for the conventional PD controller. As depicted in
Figures 18(b) and 18(d), the spacecraft’s velocities fluc-
tuate near the zero values, of which the amplitude under
the fuzzy PD control is smaller than that under the
conventional PD control. 'e results indicate that the
position responses of the spacecraft main body under the
fuzzy PD control are significantly improved in compar-
ison with those under the conventional PD control.
Figures 18(e) and 18(f ) illustrate the contrast of the at-
titude responses between the fuzzy PD control and the
conventional PD control. To reveal the details, the rota-
tion angles in the deployment phase are zoomed, where
the rotation angles under the fuzzy PD control are shown

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

Ba
se

 v
ec

to
r o

f r
ot

at
io

n 
ax

is

X axis 
Y axis
Z axis

Initial phase Deployment phase

Time (s)
0 5 10 15 20 25 30 35 40

Postlock phase

(a)

Time (s)
0 5 10 15 20 25 30 35 40

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Ro
ta

tio
n 

an
gl

e a
ro

un
d 

ro
ta

tio
n 

ax
is 

(r
ad

)

Initial phase Deployment phase

Rotation angle
Reference line

(×10–3)
Postlock phase

(b)

X axis 
Y axis
Z axis

Time (s)
0 5 10 15 20 25 30 35 40

(×10–3)5.0
4.0

3.0

2.0

1.0

0.0

–0.1

–0.2

Initial phase

Ro
ta

tio
n 

ve
lo

ci
ty

 (r
ad

/s
)

Deployment phase Postlock phase

(c)

Figure 15: Attitude responses of the spacecraft main body.

Table 2: Parameters of the PD controller in the simulation cases.

Group list Case list KP KD

Group 1
Case 1 6.5 12.5
Case 2 12.0 12.5
Case 3 17.0 12.5

Group 2
Case 1 17.0 5.5
Case 2 17.0 12.5
Case 3 17.0 25.6
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Figure 16: Position and attitude responses of the spacecraft varying with PD controller parameters.
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Table 3: Fuzzy rules of the fuzzy PD controller.

Rule index Rule statements
Rule 1 If (E is N) and (EC is N), then (ΔKP is P) and (ΔKD is P)
Rule 2 If (E is N) and (EC is Z), then (ΔKP is P) and (ΔKD is Z)
Rule 3 If (E is N) and (EC is P), then (ΔKP is N) and (ΔKD is P)
Rule 4 If (E is Z) and (EC is N), then (ΔKP is Z) and (ΔKD is P)
Rule 5 If (E is Z) and (EC is Z), then (ΔKP is Z) and (ΔKD is Z)
Rule 6 If (E is Z) and (EC is P), then (ΔKP is Z) and (ΔKD is P)
Rule 7 If (E is P) and (EC is N), then (ΔKP is N) and (ΔKD is P)
Rule 8 If (E is P) and (EC is Z), then (ΔKP is P) and (ΔKD is Z)
Rule 9 If (E is P) and (EC is P), then (ΔKP is P) and (ΔKD is P)
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Figure 17: Membership functions (MFs) chosen for both inputs and outputs of each fuzzy tuner.
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to be smaller than those under the conventional PD
control. When the solar panels are locked, the rotation
angles of the spacecraft suddenly increase as the result of
the induced impulsive forces generated from the latch
mechanisms. After that, the rotation angles of the
spacecraft with the fuzzy PD controller converge to zero
faster than those with the conventional PD controller. 'e
angular velocities of the spacecraft follow the similar
trends. 'e results indicate that the fuzzy PD controller is
more robust than the conventional PD controller in terms
of the attitude stabilization of the spacecraft.

'e adaptive fuzzy control scheme has much better
performance in terms of the control precision and time
response, especially in complex systems with uncer-
tainties. Similar conclusions were also reported by pre-
vious studies. Yang et al. [68] proposed an adaptive fuzzy
control scheme for coordinated robot arms in the pres-
ence of system uncertainties and compared it with a
model-based controller and a conventional PD controller.
'e comparisons have shown that the adaptive fuzzy
controller obtained the best control performance and the
lowest tracking errors. Najafizadeh et al. [52] designed an
adaptive fuzzy PID controller for the attitude control of
the geostationary satellite. 'e results have shown that the
adaptive fuzzy PID controller can achieve faster con-
vergence time and higher performance. Calvo et al. [49]
developed a fuzzy controller for attitude control of a
satellite and compared it with the PID controller. 'e
comparisons have proved that the fuzzy controller has
superior performance on the control precision. In recent
years, a versatile intelligent control scheme has appeared
and performed better under the uncertainties condition.
Yang et al. [69] developed a neural network-based con-
troller to track the generated motions of a robot. Tsai et al.
[32] combined the fuzzy wavelet neural networks with a

novel adaptive predictive PID control for a kind of highly
nonlinear discrete-time system with time delay. In the
future work, we will attempt to combine the more in-
telligent techniques with the classical control scheme to
improve the dynamic responses of the flexible spacecraft
with uncertainties and nonlinearities.

7. Conclusions

'is paper presented a novel adaptive control scheme,
which combines the fuzzy logic technique and PD control
for attitude stabilization of a flexible spacecraft during the
deployment of the solar array. 'e dynamic model of a
constrained rigid-flexible coupling spacecraft system with
a composite laminated solar array was first proposed. 'e
validity of our dynamic model was verified by comparing
with the cosimulation of the ADAMS-ABAQUS software.
'e comparison results showed that the proposed model
can adequately describe the deployment dynamics of a
solar array that composed of composite laminated shells.
'e dynamic responses of the spacecraft during the de-
ployment of the solar array were then investigated. 'e
deployment of the composite laminated solar array mainly
causes the position deviations in X and Y directions, as
well as the spacecraft main body approximately rotating
around the Z axis. Moreover, a control scheme for attitude
stabilization of the flexible spacecraft was proposed. 'e
parameters of a PD controller play an evident role in the
control performance for improving the displacement and
attitude responses of the spacecraft. However, these pa-
rameters cannot be accurately determined. 'e effec-
tiveness of the proposed adaptive fuzzy PD control
scheme was evaluated by comparing with that of the
conventional PD controllers. 'e comparison results
revealed the superiorities of the proposed adaptive fuzzy
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Figure 18: Comparisons of position and attitude responses between fuzzy PD control and conventional PD control.
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PD controller over the conventional PD controller. 'e
results further provide inspiration for the design of
control strategies for complex spacecraft with uncertainty
and nonlinearity.

Appendix

A. Virtual Work for Inertial Force and
External Force

Assuming that the pointQ is associated with an infinitesimal
mass element dm, the virtual work done by the inertial force
can be expressed as

δW
b
ine � − 􏽚

m
δrQ􏼐 􏼑

T
€rQdm,

� − 􏽚
m

δr
T

+ δπT􏽥s′AT
􏼐 􏼑 €r + A􏽥_ωs′ + A􏽥ω􏽥ωs′􏼐 􏼑dm,

� − δr
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€r􏽚
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m
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􏽚
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€r − δπT􏽚
m

􏽥s′􏽥_ωs′dm − δπT􏽚
m

􏽥s′􏽥ω􏽥ωs′dm.

(A.1)

If an external force f (per unit mass) act at point Q, the
virtual work done by the external force can be obtained by

δW
b
ext � 􏽚

m
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􏽥s′AT
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􏽚

m
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􏽚
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􏽥s′f′dm.

(A.2)

Since the origin of the local coordinate frame x-y-z is
located at the center of mass of the body, the total mass of the
body can be expressed as

m � 􏽚
m
dm. (A.3)

'e total external force is acting on the body with the
following expression:

Fb � 􏽚
m

fdm. (A.4)

'e torque of the external forces with respect to the
origin of the local coordinate frame is

n � 􏽚
m

􏽥s′fdm. (A.5)

'e constant inertia tensor can be defined as

J � − 􏽚
m

􏽥s′􏽥s′dm � 􏽚
m

y2 + z2 − xy − xz
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(A.6)

And the following mathematical relation satisfies

􏽚
m

s′dm � 0. (A.7)

Substituting (A.3), (A.6), and (A.7) into (A.1) yields

δW
b
ine � − δr

T
m€r − δπT

J _ω − δπT
􏽥ωJ􏽥ω. (A.8)

Substituting (A.4) and (A.5) into (A.2) yields

δW
b
ext � δr

T
Fb + δπT

n. (A.9)

Using (8) and (12), the following expression can be
obtained as

_ω � 2G €p,

􏽥ω � 2G _G
T
,

δπ � 2G
Tδp.

(A.10)

'en, (A.8) can be rewritten as
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b
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And (A.9) can be rewritten as

δW
b
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T
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T 2G
T
n􏼐 􏼑. (A.12)

B. Saint Venant–Kirchhoff Material Model

With regard to the orthotropic Saint Venant–Kirchhoff
nonlinear material, the second Piola–Kirchhoff stress can be
expressed as

S �
zW

zε
� C: ε, (B.1)

where C is the fourth-order material modulus. 'e material
modulus can be defined as [70]
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where a1 a2 a3􏼈 􏼉 is the fiber coordinate frame, b1 b2 b3􏼈 􏼉 is
the global coordinate frame, and C

abc d is the tangent ma-
terial modulus in the fiber coordinate frame. 'e tangent
material modulus can be defined as
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where
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where E1, E2, and E3 are Young’s moduli; G1, G2, and G3 are
the shear moduli; and v12, v13,v23, v21, v31, and v32 are
Poisson’s ratios.
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